Graded Symmetry Algebras of Time-Dependent Evolution Equations and Application to the Modified KP equations
نویسندگان
چکیده
By starting from known graded Lie algebras, including Virasoro algebras, new kinds of time-dependent evolution equations are found possessing graded symmetry algebras. The modified KP equations are taken as an illustrative example: new modified KP equations with m arbitrary time-dependent coefficients are obtained possessing symmetries involving m arbitrary functions of time. A particular graded symmetry algebra for the modified KP equations is derived in this connection homomorphic to the Virasoro algebras.
منابع مشابه
Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras
Polynomial-in-time dependent symmetries are analysed for polynomial-in-time dependent evolution equations. Graded Lie algebras, especially Virasoro algebras, are used to construct nonlinear variable-coefficient evolution equations, both in 1+1 dimensions and in 2+1 dimensions, which possess higher-degree polynomial-in-time dependent symmetries. The theory also provides a kind of new realisation...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملBending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory
In this article, the bending and free vibration analysis of functionally graded (FG) nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT) using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST) and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechani...
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کامل